
SHIVAM KACHHADIYA
+91-9712798452 | kshivamp012@gmail.com | https://linkedin.com/in/shivam012 |

https://github.com/shivamkachhadiya

SUMMARY

C++ systems and low‑latency developer specializing in lock‑free concurrency, high‑frequency
order matching engines, and POSIX‑based Linux system programming. Experienced in designing

high‑throughput messaging frameworks and order‑book‑style matching systems with emphasis
on microsecond‑level latency and predictable performance.

TECHNICAL SKILLS

Languages: C++ (C++17/C++20), C, Python, Java, C#.NET

Systems & Low‑Latency: Linux, POSIX APIs, Linux Internals, fork/exec, Signals, IPC, File
Descriptors, Memory Management, High‑Performance C++
Concurrency: Multithreading, Mutex, Condition Variables, std::atomic, Lock‑Free Data

Structures, Memory Ordering, Cache Optimization, False‑Sharing Avoidance
Networking: TCP/IP, Sockets, High‑Throughput Messaging
Tools: Git, CMake, Wireshark

Core CS: Data Structures, Algorithms, Operating Systems, Computer Architecture, STL

PROJECTS

High-Frequency Order Matching Engine | C++17, Multithreading, Concurrency, Low-
Latency Systems

• Engineered an exchange-style limit order book implementing price–time priority (FIFO)
matching similar to modern stock exchanges

• Designed bid/ask books using unordered_map + deque, enabling O(1) order insertion,
cancellation, and execution
• Built a multithreaded producer–consumer architecture for concurrent order ingestion and

matching
• Ensured thread-safe execution using mutexes, locks, and condition variables
• Eliminated heap allocations on the hot path, reducing latency spikes and improving execut ion

consistency under load
• Implemented best bid/ask discovery, market orders, trade generation, and order cancellation

• Stress-tested engine with 100K–1M+ simulated orders, validating throughput and scalability
• Achieved microsecond-level average execution latency through data-structure and memory
optimizations

Lock-Free Messaging Framework | C++20, Atomics, Systems Programming, Concurrency

• Designed and implemented a cache-aware lock-free Single-Producer Single-Consumer (SPSC)
ring buffer enabling ultra-low latency inter-thread communication
• Replaced mutex/condition-variable synchronization with std::atomic and acquire–release

memory ordering, eliminating context switching and lock contention

• Achieved 10–20M+ messages/sec throughput with sub‑microsecond median latency in

single‑threaded ping‑pong scenarios, ~15–25× better than mutex‑based queues under sustained
load.

• Implemented cache-line alignment (alignas(64)) and padding to prevent false sharing,
significantly improving multi-core scalability
• Enabled zero-copy message passing using preallocated buffers, eliminating heap allocations on

the hot path
• Built concurrent benchmarking suite to measure latency, throughput, and CPU utilization

against traditional blocking queues
• Focused on systems-level optimization including memory layout tuning, reduced cache misses,
and predictable low-latency execution

Linux Command Line Shell | C++17, POSIX, Linux System Programming, Process
Management

• Engineered a modular Unix-style command line shell from scratch using low-level POSIX system
calls for direct OS interaction

• Implemented process lifecycle management using fork(), execvp(), wait()/waitpid() for
spawning and controlling child processes
• Built I/O redirection (> , >>) and pipelines (|) using dup2(), pipe(), file descriptor manipulation,

replicating real Linux shell behavior
• Developed built-in commands (cd, pwd, ls, stat, mkdir, rm, cp, touch, cat, history) using

getcwd, chdir, opendir, readdir, stat, open, read, write
• Designed command parser + dispatcher architecture for extensibility and clean separation of
concerns

• Added background execution & job handling, preventing zombie processes via proper wait
handling
• Optimized runtime by minimizing dynamic allocations and using efficient STL containers on hot

paths
• Structured project using CMake, modular compilation, and header abstraction for

maintainability

EDUCATION

M.Tech in Computer Science – Systems Programming & Low-Latency Computing Focus
Vellore Institute of Technology (VIT), Vellore | CGPA: 8.65 | 2025–Present

Master of Computer Applications (MCA)
SRM Institute of Science & Technology, Chennai | CGPA: 9.26 | 2023–2025

Bachelor of Computer Applications (BCA)

Atmiya University, Rajkot | CGPA: 8.89 | 2020–2023

ACHIEVEMENTS
• Solved 400+ Data Structures and Algorithms problems on LeetCode and GeeksforGeeks
• Secured All India Rank 370 in VITMEE 2025 (Computer Science)

• Active GitHub contributor focused on C++ concurrency and Linux system programming

