SHIVAM KACHHADIYA

+91-9712798452 | kshivamp012@gmail.com | https://linkedin.com/in/shivam012 |
https://github.com/shivamkachhadiya

SUMMARY

C++ systems and low-latency developer specializing in lock-free concurrency, high-frequency
order matching engines, and POSIX-based Linux system programming. Experienced in designing
high-throughput messaging frameworks and order-book-style matching systems with emphasis
on microsecond-level latency and predictable performance.

TECHNICAL SKILLS

Languages: C++ (C++17/C++20), C, Python, Java, C#.NET

Systems & Low-Latency: Linux, POSIX APIs, Linux Internals, fork/exec, Signals, IPC, File
Descriptors, Memory Management, High-Performance C++

Concurrency: Multithreading, Mutex, Condition Variables, std::atomic, Lock-Free Data
Structures, Memory Ordering, Cache Optimization, False-Sharing Avoidance
Networking: TCP/IP, Sockets, High-Throughput Messaging

Tools: Git, CMake, Wireshark

Core CS: Data Structures, Algorithms, Operating Systems, Computer Architecture, STL

PROJECTS

High-Frequency Order Matching Engine | C++17, Multithreading, Concurrency, Low-
Latency Systems

¢ Engineered an exchange-style limit order book implementing price—time priority (FIFO)
matching similar to modern stock exchanges

* Designed bid/ask books using unordered_map + deque, enabling O(1) order insertion,
cancellation, and execution

e Built a multithreaded producer—consumer architecture for concurrent order ingestion and
matching

e Ensured thread-safe execution using mutexes, locks, and condition variables

e Eliminated heap allocations on the hot path, reducing latency spikes and improving execution
consistency under load

e Implemented best bid/ask discovery, market orders, trade generation, and order cancellation
e Stress-tested engine with 100K—1M+ simulated orders, validating throughput and scalability
¢ Achieved microsecond-level average execution latency through data-structure and memory
optimizations

Lock-Free Messaging Framework | C++20, Atomics, Systems Programming, Concurrency

¢ Designed and implemented a cache-aware lock-free Single-Producer Single-Consumer (SPSC)
ring buffer enabling ultra-low latency inter-thread communication

¢ Replaced mutex/condition-variable synchronization with std::atomic and acquire—release
memory ordering, eliminating context switching and lock contention

e Achieved 10-20M+ messages/sec throughput with sub-microsecond median latency in
single-threaded ping-pong scenarios, ~15-25x better than mutex-based queues under sustained
load.

e Implemented cache-line alignment (alignas(64)) and padding to prevent false sharing,
significantly improving multi-core scalability

* Enabled zero-copy message passing using preallocated buffers, eliminating heap allocations on
the hot path

e Built concurrent benchmarking suite to measure latency, throughput, and CPU utilization
against traditional blocking queues

¢ Focused on systems-level optimization including memory layout tuning, reduced cache misses,
and predictable low-latency execution

Linux Command Line Shell | C++17, POSIX, Linux System Programming, Process
Management

¢ Engineered a modular Unix-style command line shell from scratch using low-level POSIX system
calls for direct OS interaction

e Implemented process lifecycle management using fork(), execvp(), wait()/waitpid() for
spawning and controlling child processes

e Built 1/0O redirection (>, >>) and pipelines (|) using dup2(), pipe(), file descriptor manipulation,
replicating real Linux shell behavior

¢ Developed built-in commands (cd, pwd, Is, stat, mkdir, rm, cp, touch, cat, history) using
getcwd, chdir, opendir, readdir, stat, open, read, write

* Designed command parser + dispatcher architecture for extensibility and clean separation of
concerns

¢ Added background execution & job handling, preventing zombie processes via proper wait
handling

e Optimized runtime by minimizing dynamic allocations and using efficient STL containers on hot
paths

e Structured project using CMake, modular compilation, and header abstraction for
maintainability

EDUCATION

M.Tech in Computer Science — Systems Programming & Low-Latency Computing Focus
Vellore Institute of Technology (VIT), Vellore | CGPA: 8.65 | 2025—Present

Master of Computer Applications (MCA)
SRM Institute of Science & Technology, Chennai | CGPA: 9.26 | 2023-2025

Bachelor of Computer Applications (BCA)
Atmiya University, Rajkot | CGPA: 8.89 | 20202023

ACHIEVEMENTS

e Solved 400+ Data Structures and Algorithms problems on LeetCode and GeeksforGeeks
e Secured All India Rank 370 in VITMEE 2025 (Computer Science)
¢ Active GitHub contributor focused on C++ concurrency and Linux system programming

